How Hot Electrons Get Cool

2021-03-28T20:55:20-06:00
03/16
Supporting Image
Supporting Image
Thermalizing nanowires

It’s a hot summer day. You desperately want something cold to drink, but unfortunately, your bottle of root beer has been sitting in a hot car all day. You put it into a bucket full of ice to cool it down. But it’s taking forever! How, you wonder, could you speed the process up? The same question is important for understanding how electronic devices work, and how we can make them work better by controlling the temperature of the electrons that power them. Read on to find out what a bottle of root beer in a cooler full of ice and a nanowire in a vat of liquid helium have in common!

0 0    
How Hot Electrons Get Cool2021-03-28T20:55:20-06:00

Heat Flow and Quantum Oscillators

2020-11-05T09:00:35-06:00
11/05
Supporting Image
Supporting Image
Good vibrations

Materials that are absolutely perfect—in other words, materials that contain no defect of any kind—are usually not very interesting. Imagine being married to a saint: you would quickly be bored out of your mind! Defects and impurities can considerably change many properties of materials in ways that allow a wide range of applications.

0 0    
Heat Flow and Quantum Oscillators2020-11-05T09:00:35-06:00
Go to Top