What would you like to search for?

Froot Loops, Legos, and Self-Assembly

2021-07-14T11:15:04-06:00
02/12
Supporting Image
Supporting Image
Forming nanostructures

Self-assembly is the process by which individual building blocks—at the smallest level, atoms—spontaneously form larger structures. The structures they form depend on the size and shape of the building blocks, and on the conditions to which these building blocks are exposed. This can be demonstrated quite simply using breakfast cereal, or for more complex cases using specially prepared Legos.

0 0    
Froot Loops, Legos, and Self-Assembly2021-07-14T11:15:04-06:00

Interacting with the World’s Universal Building Blocks

2021-07-14T11:15:48-06:00
08/04
Supporting Image
Supporting Image
Free app

AtomTouch is a free, interactive molecular simulation app, created by researchers at the University of Wisconsin Materials Research Science and Engineering Center (UW MRSEC) to allow learners to explore principles of thermodynamics and molecular dynamics in an tactile, engaging way.

0 0    
Interacting with the World’s Universal Building Blocks2021-07-14T11:15:48-06:00

Make 21st-Century Wonder Material Graphene Cheaply and Easily in the Classroom!

2021-07-14T11:16:20-06:00
03/14
Supporting Image
Supporting Image
Chemical vapor deposition

Graphene is a two-dimensional material made from a single sheet of atoms, with outstanding mechanical, electronic, and thermal properties. It is a promising candidate to enable next-generation technologies in a wide range of fields, including electronics, energy, and medicine. This economical, safe, and simple lab activity allows students to make graphene via chemical vapor deposition in 30–45 minutes in a classroom setting.

0 0    
Make 21st-Century Wonder Material Graphene Cheaply and Easily in the Classroom!2021-07-14T11:16:20-06:00

Use a laser pointer to measure the thickness of your hair!

2021-07-14T11:14:27-06:00
11/05
Supporting Image
Supporting Image
Light scattering and diffraction

Have you ever wondered how scientists can accurately measure the size of very small objects like molecules, nanoparticles, and parts of cells? Scientists are continually finding new ways to do this, and one powerful tool they use is light scattering. When an incoming beam of light hits an object, the light "scatters," or breaks into separate streams that form different patterns depending on the size of the object. This incoming light might be visible light, like the light we see from the sun, or it might be higher-energy light like X-rays. The light from commercial laser pointers, it turns out, is perfectly suited to measure the size of a human hair!

0 0    
Use a laser pointer to measure the thickness of your hair!2021-07-14T11:14:27-06:00

What is a Crystal, Anyway?

2023-05-19T15:33:43-06:00
05/18
Supporting Image
Supporting Image
Electric Crystals, Part 1

Crystals aren't magic, but they are amazing! In this engaging, comic-driven lesson, students do individual and group-based activities to understand the characteristics of crystals (like quartz) versus amorphous solids (like glass). This lesson is part 1 of a 4-part student-driven, lecture-free series in which students will do card sorts, build hands-on models, solve engineering design puzzles, and more!

0 0    
What is a Crystal, Anyway?2023-05-19T15:33:43-06:00

Unit Cells and Their Molecular Building Blocks

2023-05-19T15:33:04-06:00
05/18
Supporting Image
Supporting Image
Electric Crystals, Part 2

Through hands-on activities using gumdrops and toothpicks, students will learn about unit cells that make up the repeating structures of crystals like table salt. This lesson is part 2 of a 4-part student-driven, lecture-free series, in which students will do card sorts, build hands-on models, solve engineering design puzzles, and more!

0 0    
Unit Cells and Their Molecular Building Blocks2023-05-19T15:33:04-06:00

How do Crystals get their Shapes?

2023-05-19T13:41:48-06:00
05/19
Supporting Image
Supporting Image
Electric Crystals, Part 3

Students make paper models of crystal unit cells and build a large crystal structure together while reflecting on the role of symmetry in crystal formation. This lesson is part 3 of a 4-part student-driven, lecture-free series, in which students will do card sorts, build hands-on models, solve engineering design puzzles, and more!

0 0    
How do Crystals get their Shapes?2023-05-19T13:41:48-06:00

Electric Crystals and their Broken Symmetries

2023-05-19T15:13:04-06:00
05/19
Supporting Image
Supporting Image
Electric Crystals, Part 4

Students learn how some crystals produce electricity when squeezed! This lesson is part 4 of a 4-part student-driven, lecture-free series, in which students will do card sorts, build hands-on models, solve engineering design puzzles, and more!

0 0    
Electric Crystals and their Broken Symmetries2023-05-19T15:13:04-06:00
Go to Top