Electric Crystals and their Broken Symmetries

2023-05-19T15:13:04-06:00
05/19
Supporting Image
Supporting Image
Electric Crystals, Part 4

Students learn how some crystals produce electricity when squeezed! This lesson is part 4 of a 4-part student-driven, lecture-free series, in which students will do card sorts, build hands-on models, solve engineering design puzzles, and more!

0 0    
Electric Crystals and their Broken Symmetries2023-05-19T15:13:04-06:00

How do Crystals get their Shapes?

2023-05-19T13:41:48-06:00
05/19
Supporting Image
Supporting Image
Electric Crystals, Part 3

Students make paper models of crystal unit cells and build a large crystal structure together while reflecting on the role of symmetry in crystal formation. This lesson is part 3 of a 4-part student-driven, lecture-free series, in which students will do card sorts, build hands-on models, solve engineering design puzzles, and more!

0 0    
How do Crystals get their Shapes?2023-05-19T13:41:48-06:00

What is a Crystal, Anyway?

2023-05-19T15:33:43-06:00
05/18
Supporting Image
Supporting Image
Electric Crystals, Part 1

Crystals aren't magic, but they are amazing! In this engaging, comic-driven lesson, students do individual and group-based activities to understand the characteristics of crystals (like quartz) versus amorphous solids (like glass). This lesson is part 1 of a 4-part student-driven, lecture-free series in which students will do card sorts, build hands-on models, solve engineering design puzzles, and more!

0 0    
What is a Crystal, Anyway?2023-05-19T15:33:43-06:00

Unit Cells and Their Molecular Building Blocks

2023-05-19T15:33:04-06:00
05/18
Supporting Image
Supporting Image
Electric Crystals, Part 2

Through hands-on activities using gumdrops and toothpicks, students will learn about unit cells that make up the repeating structures of crystals like table salt. This lesson is part 2 of a 4-part student-driven, lecture-free series, in which students will do card sorts, build hands-on models, solve engineering design puzzles, and more!

0 0    
Unit Cells and Their Molecular Building Blocks2023-05-19T15:33:04-06:00

Froot Loops, Legos, and Self-Assembly

2021-07-14T11:15:04-06:00
02/12
Supporting Image
Supporting Image
Forming nanostructures

Self-assembly is the process by which individual building blocks—at the smallest level, atoms—spontaneously form larger structures. The structures they form depend on the size and shape of the building blocks, and on the conditions to which these building blocks are exposed. This can be demonstrated quite simply using breakfast cereal, or for more complex cases using specially prepared Legos.

0 0    
Froot Loops, Legos, and Self-Assembly2021-07-14T11:15:04-06:00

Carbon Onions

2021-07-14T11:02:46-06:00
02/29
Supporting Image
Supporting Image
Exotic nanostructures

Carbon-based nanostructures are among the most intensely studied systems in nanotechnology. Potential practical applications span the fields of medicine, consumer electronics, and hydrogen storage, and they could even be used to develop a space elevator. A research team at the University of Northern Iowa is probing the properties of multilayered carbon nanostructures known as "carbon onions."

0 0    
Carbon Onions2021-07-14T11:02:46-06:00

How to Make a Quantum Laser Pointer

2021-07-14T11:03:44-06:00
02/27
Supporting Image
Supporting Image
Nanowires

Scientists and engineers are making smaller and smaller structures designed to control the quantum states of electrons in a material. By controlling quantum mechanics, we can create new materials that do not exist in nature, develop more efficient solar cells and faster computer chips, and even discover exotic new states of matter.

0 0    
How to Make a Quantum Laser Pointer2021-07-14T11:03:44-06:00
Go to Top