The Adventures of Solar Neutrons

2017-08-18T13:28:11+00:00
07/14
Supporting Image
Supporting Image
Detecting neutron radiation
by Peter Dowben, Nicole Benker

Neutron radiation detection is an important issue for the space program, satellite communications, and national defense. But since neutrons have no electric charge, they can pass through many kinds of solid objects without stopping. This makes it difficult to build devices to detect them, so we need special materials that can absorb neutrons and leave a measurable signature when they do. Researchers at the University of Nebraska-Lincoln are studying the effects of solar neutron radiation on two types of materials on the International Space Station (ISS), using detectors made of very stable compounds that contain boron-10 and lithium-6.

0 0     4
The Adventures of Solar Neutrons2017-08-18T13:28:11+00:00

CHASING THE MYSTERIOUS AND ELUSIVE LIGHT HOLE

2016-12-16T10:09:10+00:00
12/02
Supporting Image
Supporting Image
Secrets of semiconductors

Semiconductors are materials with properties intermediate between metals and non-conducting insulators, defined by the amount of energy needed to make an electron conductive in the material. The non-conducting electrons occupy a continuum of energy states, but two of these states (the “heavy hole” and “light hole”) are nearly identical in energy. The heavy hole is easy to observe and study, but the light hole eludes most observers.

0 0     5
CHASING THE MYSTERIOUS AND ELUSIVE LIGHT HOLE2016-12-16T10:09:10+00:00