How Hot Electrons Get Cool

2021-07-14T10:22:47-06:00
03/16
Supporting Image
Supporting Image
Thermalizing nanowires

It’s a hot summer day. You desperately want something cold to drink, but unfortunately, your bottle of root beer has been sitting in a hot car all day. You put it into a bucket full of ice to cool it down. But it’s taking forever! How, you wonder, could you speed the process up? The same question is important for understanding how electronic devices work, and how we can make them work better by controlling the temperature of the electrons that power them. Read on to find out what a bottle of root beer in a cooler full of ice and a nanowire in a vat of liquid helium have in common!

0 0    
How Hot Electrons Get Cool2021-07-14T10:22:47-06:00

Strike Up the Band (Structure)

2021-07-14T10:27:00-06:00
11/05
Supporting Image
Supporting Image
Building a better computer
by Peter Dowben, Jocelyn Bosley

Scientists are working to develop electronic devices that store and process information by manipulating a property of electrons called spin—a research area aptly known as spintronics. The semiconductors we are developing will not only be faster and cheaper than those used in conventional devices, but will also have more functionality.

1 1    
Strike Up the Band (Structure)2021-07-14T10:27:00-06:00

CHASING THE MYSTERIOUS AND ELUSIVE LIGHT HOLE

2021-07-14T10:29:14-06:00
11/05
Supporting Image
Supporting Image
Secrets of semiconductors

Semiconductors are materials with properties intermediate between metals and non-conducting insulators, defined by the amount of energy needed to make an electron conductive in the material. The non-conducting electrons occupy a continuum of energy states, but two of these states (the “heavy hole” and “light hole”) are nearly identical in energy. The heavy hole is easy to observe and study, but the light hole eludes most observers.

0 0    
CHASING THE MYSTERIOUS AND ELUSIVE LIGHT HOLE2021-07-14T10:29:14-06:00

How to Turn a Metal Into an Insulator

2021-07-14T10:30:43-06:00
11/05
Supporting Image
Supporting Image
Locking up electrons

Solids are generally divided into metals, which conduct electricity, and insulators, which do not. Some oxides straddle this boundary, however: a material's structure and properties suggest it should be a metal, but it sometimes behaves as an insulator. Researchers at the University of California, Santa Barbara are digging into the mechanisms of this transformation and are aiming to harness it for use in novel electronic devices.

0 0    
How to Turn a Metal Into an Insulator2021-07-14T10:30:43-06:00

The future of solar energy is . . . an inkjet printer?!

2021-07-14T10:38:58-06:00
11/05
Supporting Image
Supporting Image
Printable perovskites

To increase our use of solar energy, we need to create more efficient, stable, and cost-effective solar cells. What if we could use an inkjet printer to fabricate them? A new type of solar cell uses a class of materials called perovskites, which have a special crystal structure that interacts with light in a way that produces an electric voltage. We've developed a method to produce perovskite thin films using an inket printer, which in the future could pave the way to manufacture solar cells that are surprisingly simple and cheap.

0 0    
The future of solar energy is . . . an inkjet printer?!2021-07-14T10:38:58-06:00

Scanning Tunneling Microscopy

2021-07-14T11:19:50-06:00
11/05
Researchers at IBM moved around iron atoms on a copper surface to spell out the Kanji characters for the word atom. Image courtesy of IBM.
Researchers at IBM moved around iron atoms on a copper surface to spell out the Kanji characters for the word atom. Image courtesy of IBM.
Using STM to take pictures of atoms

You’re lining up your phone to take a picture of your dog. Light comes down from the sun, bounces off the dog, and into your camera lens, allowing you to take the photo. Your eyes work similarly, taking in all the light particles, known as photons, that are scattering off of objects in the world. Most things “see” by detecting these bouncing photons, which is why both you and your phone have a hard time seeing anything at all when the lights are off.

0 0    
Scanning Tunneling Microscopy2021-07-14T11:19:50-06:00

Magnets, Gatorade, and the Quest for Energy-Efficient Computers

2021-07-14T10:40:22-06:00
09/30
Supporting Image
Supporting Image
Computing with fool's gold?

Fool's gold is a beautiful mineral often mistaken for gold, but recent research shows that its scientific value may be great indeed. Using a liquid similar to Gatorade, it can be turned into a magnet at the flick of a switch! Read on to learn more!

0 0    
Magnets, Gatorade, and the Quest for Energy-Efficient Computers2021-07-14T10:40:22-06:00

A Molecular Switch

2021-07-14T10:41:34-06:00
08/10
Supporting Image
Supporting Image
Tiny magnets do big work
by Guanhua (Tibbers) Hao, Peter Dowben

Think of the hard disk in your computer. Information is stored there in the form of magnetic "bits." But do you know how small a magnet can be? Some molecules make magnetic magic, and these special molecules may give rise to the ultrafast, high precision, low power devices of the future.

0 0    
A Molecular Switch2021-07-14T10:41:34-06:00

Swing-Dancing Electron Pairs

2021-07-14T10:44:45-06:00
02/19
Supporting Image
Supporting Image
Superconductors

Superconductors are materials that permit electrical current to flow without energy loss. Their amazing properties form the basis for MRI (magnetic resonance imaging) devices and high-speed maglev trains, as well as emerging technologies such as quantum computers. At the heart of all superconductors is the bunching of electrons into pairs. Click the image to learn more about the "dancing" behavior of these electron pairs!

1 1    
Swing-Dancing Electron Pairs2021-07-14T10:44:45-06:00

New World Disorder

2021-07-14T10:49:50-06:00
04/26
Supporting Image
Supporting Image
Electron movement in disordered nanowires

We tend to think of materials as either electrical conductors or insulators: some materials, like metals, have low electrical resistance and conduct electricity easily, while others, like wood or plastic, have high electrical resistance and do not readily conduct electricity. Strange experimental results, however, reveal large fluctuations in the electrical resistance of thin metallic nanowires when a magnetic field or charge difference is applied to them. Click to learn how a more nuanced understanding of electron behavior helps to explain these variations in electrical resistance that may revolutionize the tech industry!

0 0    
New World Disorder2021-07-14T10:49:50-06:00
Go to Top