What would you like to search for?

Froot Loops, Legos, and Self-Assembly

2019-02-12T14:50:43-06:00
02/12
Supporting Image
Supporting Image
Forming nanostructures

Self-assembly is the process by which individual building blocks—at the smallest level, atoms—spontaneously form larger structures. The structures they form depend on the size and shape of the building blocks, and on the conditions to which these building blocks are exposed. This can be demonstrated quite simply using breakfast cereal, or for more complex cases using specially prepared Legos.

0 0    
Froot Loops, Legos, and Self-Assembly2019-02-12T14:50:43-06:00

Use Light to Turn Your World Upside-Down!

2017-06-08T15:32:37-06:00
02/19
Supporting Image
Supporting Image
Making upside-down images

We can easily observe light with our eyes, and so it is one of the most familiar parts of the world around us. And yet, light often does amazing and unexpected things. Light travels in straight lines from the source to our eyes. This fact allows us to understand many of the cool things that light can do. In this lesson, we will observe how light creates mirages and shadows. And we will build a pinhole camera which makes things appear upside-down. We can understand the upside-down images by thinking about the straight line that the light took from the object to the screen.

0 0    
Use Light to Turn Your World Upside-Down!2017-06-08T15:32:37-06:00

Interacting with the World’s Universal Building Blocks

2017-07-06T13:26:22-06:00
08/04
Supporting Image
Supporting Image
Free app

AtomTouch is a free, interactive molecular simulation app, created by researchers at the University of Wisconsin Materials Research Science and Engineering Center (UW MRSEC) to allow learners to explore principles of thermodynamics and molecular dynamics in an tactile, engaging way.

0 0    
Interacting with the World’s Universal Building Blocks2017-07-06T13:26:22-06:00

Make 21st-Century Wonder Material Graphene Cheaply and Easily in the Classroom!

2016-06-06T14:37:25-06:00
03/14
Supporting Image
Supporting Image
Chemical vapor deposition

Graphene is a two-dimensional material made from a single sheet of atoms, with outstanding mechanical, electronic, and thermal properties. It is a promising candidate to enable next-generation technologies in a wide range of fields, including electronics, energy, and medicine. This economical, safe, and simple lab activity allows students to make graphene via chemical vapor deposition in 30–45 minutes in a classroom setting.

0 0    
Make 21st-Century Wonder Material Graphene Cheaply and Easily in the Classroom!2016-06-06T14:37:25-06:00

Use a laser pointer to measure the thickness of your hair!

2018-03-21T12:30:32-06:00
06/21
Supporting Image
Supporting Image
Light scattering and diffraction

Have you ever wondered how scientists can accurately measure the size of very small objects like molecules, nanoparticles, and parts of cells? Scientists are continually finding new ways to do this, and one powerful tool they use is light scattering. When an incoming beam of light hits an object, the light "scatters," or breaks into separate streams that form different patterns depending on the size of the object. This incoming light might be visible light, like the light we see from the sun, or it might be higher-energy light like X-rays. The light from commercial laser pointers, it turns out, is perfectly suited to measure the size of a human hair!

0 0    
Use a laser pointer to measure the thickness of your hair!2018-03-21T12:30:32-06:00