Supporting Image
May 19, 2023 0    
Electric Crystals, Part 3
How do Crystals get their Shapes?

Students make paper models of crystal unit cells and build a large crystal structure together while reflecting on the role of symmetry in crystal formation. This lesson is part 3 of a 4 part series. 


Approx time: 45 minutes
Things you'll need:
  • Crystal 3D Unit Cell Activity handout found here

    Electric Crystals (Part 3) worksheet found here

    Toothpicks

    Scissors

    Tape or glue

    Ruler

Step 1

Unit Cell Models

Cut out and assemble unit cell models from paper.

Following the instructions on the worksheet, cut out the unit cell meshes. For video instructions, check out: Exploring Crystal Structure and Symmetry (Part 1). These models will be used throughout the rest of the lesson.

Fig. 1 (Click to enlarge).
Fig. 1 (Click to enlarge).
Step 2

What's a Symmetry?

Definitions of rotational and mirror symmetries.

The worksheet shows some examples of rotational and mirror symmetries. Also, check in with a video where Madelyn explains how to observe the symmetries of our unit cell models: Exploring Crystal Structure and Symmetry (Part 2).

Fig. 2 (Click to enlarge).
Fig. 2 (Click to enlarge).
Step 3

Replace the Unit Cell File Labels

Use observations of the unit cell models to identify lost file labels.

The newest employee at The Crystal Factory lost the labels for two of the unit cell files. Students will identify the symmetries of each unit cell model and fill out tables with the relevant information. They'll use the information they gather to determine the missing labels for the file cards.

Step 4

Build a Crystal

Build a crystal structure from unit cells.

Students will work together (or build more unit cell models, if they're working individually) to create a large crystal structure from their paper unit cells. They'll then reflect on the process of building a crystal from unit cells as opposed to individual molecules. Students can check in again with a video where Madelyn explains how symmetry restricts the ways crystals can form.

Fig. 4 (Click to enlarge).
Fig. 4 (Click to enlarge).
Step 5

Design Challenge

Try to create a unit cell without rotational or mirror symmetries.

Things can go wrong if a crystal doesn't have the proper symmetries. Students are prompted to create a unit cell without the symmetries we discuss in this lesson. The comic gives a hint as to how crystals grow from their unit cells, and the special properties their symmetry imparts!

Fig. 5 (Click to enlarge).
Fig. 5 (Click to enlarge).
Why it Works

Supplemental materials for teachers can be found at the Galactic Polymath website, where you will find information on learning standards and be able to provide feedback on the lesson.

Don't stop here! This is part 3 of a series! Make sure to check out:

What is a Crystal, Anyway? (Electric Crystals, Part 1)

Unit Cells and Their Molecular Building Blocks (Electric Crystals, Part 2)

Electric Crystals and their Broken Symmetries (Electric Crystals, Part 4)


TAGS: #crystal structure    #crystals    #nanostructures    
 
SHARE THIS POST:

Related Posts

07/25
Supporting Image
Supporting Image
Ferroelectric hafnia

Ferroelectric materials generate electric fields that move charges around, just as a bar magnet produces a magnetic field that moves magnets around. Ferroelectric materials can be used for data storage to make electronics more energy efficient, but they don’t always play well with the silicon technology used in devices like phones and computers. HAFNIA TO THE RESCUE! Click to learn more.

0 0    

More Funsize Activities

05/19
Supporting Image
Supporting Image
Electric Crystals, Part 3

Students make paper models of crystal unit cells and build a large crystal structure together while reflecting on the role of symmetry in crystal formation. This lesson is part 3 of a 4-part student-driven, lecture-free series, in which students will do card sorts, build hands-on models, solve engineering design puzzles, and more!

0 0    
05/18
Supporting Image
Supporting Image
Electric Crystals, Part 2

Through hands-on activities using gumdrops and toothpicks, students will learn about unit cells that make up the repeating structures of crystals like table salt. This lesson is part 2 of a 4-part student-driven, lecture-free series, in which students will do card sorts, build hands-on models, solve engineering design puzzles, and more!

0 0    
11/30
Supporting Image
Supporting Image
Domains and Disks
by Shireen Adenwalla, Xiaoshan Xu

Magnets curve themselves into beautiful patterns called domains, which cannot be seen with the naked eye. Now that magnetic paint and nail polish are easily available, we can use magnets to create all kinds of magnetic patterns which we can see, photograph, erase and rewrite! Click to find out how YOU can paint with magnets!

2 2    
11/05
Supporting Image
Supporting Image
Light scattering and diffraction

Have you ever wondered how scientists can accurately measure the size of very small objects like molecules, nanoparticles, and parts of cells? Scientists are continually finding new ways to do this, and one powerful tool they use is light scattering. When an incoming beam of light hits an object, the light "scatters," or breaks into separate streams that form different patterns depending on the size of the object. This incoming light might be visible light, like the light we see from the sun, or it might be higher-energy light like X-rays. The light from commercial laser pointers, it turns out, is perfectly suited to measure the size of a human hair!

0 0    
05/08
Supporting Image
Supporting Image
The Visible Spectrum and Spectroscopes
by Wesley Sliger, Martin Centurion

Have you ever wondered why shining light on a glass of water causes rainbows to appear? Or noticed the colors that reflect from a CD or DVD? In this lesson, you will make an instrument called a spectroscope that can separate light into its hidden components. You will also be able to use the spectroscope to understand why different colored objects and light sources appear the way they do.

0 0    
02/12
Supporting Image
Supporting Image
Forming nanostructures

Self-assembly is the process by which individual building blocks—at the smallest level, atoms—spontaneously form larger structures. The structures they form depend on the size and shape of the building blocks, and on the conditions to which these building blocks are exposed. This can be demonstrated quite simply using breakfast cereal, or for more complex cases using specially prepared Legos.

0 0    
03/14
Supporting Image
Supporting Image
Chemical vapor deposition

Graphene is a two-dimensional material made from a single sheet of atoms, with outstanding mechanical, electronic, and thermal properties. It is a promising candidate to enable next-generation technologies in a wide range of fields, including electronics, energy, and medicine. This economical, safe, and simple lab activity allows students to make graphene via chemical vapor deposition in 30–45 minutes in a classroom setting.

0 0    
02/19
Supporting Image
Supporting Image
Making upside-down images

We can easily observe light with our eyes, and so it is one of the most familiar parts of the world around us. And yet, light often does amazing and unexpected things. Light travels in straight lines from the source to our eyes. This fact allows us to understand many of the cool things that light can do. In this lesson, we will observe how light creates mirages and shadows. And we will build a pinhole camera which makes things appear upside-down. We can understand the upside-down images by thinking about the straight line that the light took from the object to the screen.

0 0    

WRITE COMMENT

Go to Top