Hunting Quantum Tornadoes with X-rays

2021-07-14T10:34:47-06:00
11/05
Supporting Image
Supporting Image
Superfluid helium droplets

In a unique state of matter called a superfluid, tiny "tornadoes" form that may play an important role in nanotechnology, superconductivity, and other applications. Just as tornadoes are invisible air currents that become visible when they suck debris into their cores, the quantum vortices in superfluids attract atoms that make the vortices visible. Quantum vortices are so small they can only be imaged using very short-wavelength x-rays, however.

0 0    
Hunting Quantum Tornadoes with X-rays2021-07-14T10:34:47-06:00

Swing-Dancing Electron Pairs

2021-07-14T10:44:45-06:00
02/19
Supporting Image
Supporting Image
Superconductors

Superconductors are materials that permit electrical current to flow without energy loss. Their amazing properties form the basis for MRI (magnetic resonance imaging) devices and high-speed maglev trains, as well as emerging technologies such as quantum computers. At the heart of all superconductors is the bunching of electrons into pairs. Click the image to learn more about the "dancing" behavior of these electron pairs!

1 1    
Swing-Dancing Electron Pairs2021-07-14T10:44:45-06:00

The Turbulent Tangle of Quantum Vortices

2021-07-14T10:50:38-06:00
02/14
Supporting Image
Supporting Image
Ultracold turbulence
by Daniel Lathrop, Daniel Serrano

You may know helium as the gas that can make balloons and blimps float. At the University of Maryland, scientists are using this element to study the exotic physics of quantum vortices: the tornadoes or bathtub-drain whirls of the quantum world. Knowing how quantum vortices work could help us better understand other turbulent events (like wind and ocean currents), as well as the complex physical behavior of superconductors and neutron stars.

2 2    
The Turbulent Tangle of Quantum Vortices2021-07-14T10:50:38-06:00

Let There Be Light! (And a Little Bit of Magnetism)

2021-07-14T11:01:30-06:00
03/01
Supporting Image
Supporting Image
The wonderful world of complex oxides

One of the oldest and most studied materials in all of physics and materials science has been shown to display magnetism when illuminated with a certain type of light.

0 0    
Let There Be Light! (And a Little Bit of Magnetism)2021-07-14T11:01:30-06:00

Going With the FFLO

2021-07-14T11:05:19-06:00
02/24
Supporting Image
Supporting Image
Magnets and superconductors

Superconductors and magnetic fields do not usually get along, but a research team led by a Brown University physicist has produced new evidence for an exotic superconducting state that can indeed arise when a superconductor is subject to a strong magnetic field. Their results could enable scientists to develop materials for more efficient memory storage, and even help to explain the behavior of distant astronomical objects called pulsars.

0 0    
Going With the FFLO2021-07-14T11:05:19-06:00
Go to Top