Painting with magnets

2023-05-19T15:33:51-06:00
11/30
Supporting Image
Supporting Image
Domains and Disks
by Shireen Adenwalla, Xiaoshan Xu

Magnets curve themselves into beautiful patterns called domains, which cannot be seen with the naked eye. Now that magnetic paint and nail polish are easily available, we can use magnets to create all kinds of magnetic patterns which we can see, photograph, erase and rewrite! Click to find out how YOU can paint with magnets!

2 2    
Painting with magnets2023-05-19T15:33:51-06:00

Writing the Magnetic Alphabet

2022-05-12T12:07:11-06:00
05/12
Supporting Image
Supporting Image
Laser memory

Instead of pencil, paper, and eraser, we can use combinations of lasers and magnetic materials to write, read, and and erase information by varying the temperature and magnetic field. Here we apply our laser "pencil" to magnetic "paper" to write the letter “N” (Go Huskers!!). This technique allows us write, erase, and rewrite tiny magnetic memories like those found in your computer hard drive and other devices. Click to learn how it works!

0 0    
Writing the Magnetic Alphabet2022-05-12T12:07:11-06:00

Strike Up the Band (Structure)

2021-07-14T10:27:00-06:00
11/05
Supporting Image
Supporting Image
Building a better computer
by Peter Dowben, Jocelyn Bosley

Scientists are working to develop electronic devices that store and process information by manipulating a property of electrons called spin—a research area aptly known as spintronics. The semiconductors we are developing will not only be faster and cheaper than those used in conventional devices, but will also have more functionality.

1 1    
Strike Up the Band (Structure)2021-07-14T10:27:00-06:00

Imprinting Memory in Nanomagnets by Field Cooling

2021-07-14T10:32:43-06:00
11/05
Supporting Image
Supporting Image
Nanomagnetism

You may know that the media used in magnetic recording technologies, such as computer hard drives, are made of millions of tiny nanomagnets. Each nanomagnet can be switched up or down to record bits of information as ones and zeros. These media are constantly subjected to magnetic fields in order to write, read, and erase information. If you have ever placed a magnet too close to your laptop or cell phone, you know that exposure to an external magnetic field can disrupt information stored this way. Did you know that it is possible for the nanomagnets to "remember" their previous state, if carefully manipulated under specific magnetic field and temperature conditions? Using a kind of memory called topological magnetic memory, scientists have found out how to imprint memory into magnetic thin films by cooling the material under the right conditions.

0 0    
Imprinting Memory in Nanomagnets by Field Cooling2021-07-14T10:32:43-06:00

Straining for More Stable Memory

2021-07-14T10:35:44-06:00
11/05
Supporting Image
Supporting Image
Magnetic anisotropy

Would you rather have data storage that is compact or reliable? Both, of course! Digital electronic devices like hard drives rely on magnetic memory to store data, encoding information as “0”s and “1”s that correspond to the direction of the magnetic moment, or spin, of atoms in individual bits of material. For magnetic memory to work, the magnetization should not change until the data is erased or rewritten. Unfortunately, some magnetic materials that are promising for high density storage have low data stability, which can be improved by squeezing or stretching the crystal structures of magnetic memory materials, enhancing a material property called magnetic anisotropy.

0 0    
Straining for More Stable Memory2021-07-14T10:35:44-06:00

Magnets, Gatorade, and the Quest for Energy-Efficient Computers

2021-07-14T10:40:22-06:00
09/30
Supporting Image
Supporting Image
Computing with fool's gold?

Fool's gold is a beautiful mineral often mistaken for gold, but recent research shows that its scientific value may be great indeed. Using a liquid similar to Gatorade, it can be turned into a magnet at the flick of a switch! Read on to learn more!

0 0    
Magnets, Gatorade, and the Quest for Energy-Efficient Computers2021-07-14T10:40:22-06:00

A Molecular Switch

2021-07-14T10:41:34-06:00
08/10
Supporting Image
Supporting Image
Tiny magnets do big work
by Guanhua (Tibbers) Hao, Peter Dowben

Think of the hard disk in your computer. Information is stored there in the form of magnetic "bits." But do you know how small a magnet can be? Some molecules make magnetic magic, and these special molecules may give rise to the ultrafast, high precision, low power devices of the future.

0 0    
A Molecular Switch2021-07-14T10:41:34-06:00

Spin cant? Spin CAN!

2021-07-14T10:46:48-06:00
01/25
Supporting Image
Supporting Image
Magnets with a twist
by Aldo Raeliarijaona, Alexey Kovalev

In most magnetic materials, the magnetic moments of individual atoms are aligned parallel to one another and point in the same direction. In special structures called skyrmions and antiskyrmions, however, they are arranged in a spiraling pattern. Their stability and compact size makes skyrmions and antiskyrmions especially useful for encoding lots of data in a small space. But a few questions need to be answered before skyrmion-based technology can be used in your iPhone or other memory devices. First, why do these magnetic structures form in some materials and not others? How can we design a system where they will form? And how can we generate these structures on demand? Click to find out!

0 0    
Spin cant? Spin CAN!2021-07-14T10:46:48-06:00

Spins and Skyrmions

2021-07-14T10:47:33-06:00
07/03
Supporting Image
Supporting Image
Magnetic patterns

Recent progress in materials science has led to the creation of new magnetic materials in which the magnetism follows complex patterns. The formation of these patterns depends on a phenomenon called spin-orbital coupling. Because they can be manipulated by electric currents and temperature changes, materials exhibiting these interesting magnetic patterns may have applications in magnetic memories and logic devices. Click to learn how!

0 0    
Spins and Skyrmions2021-07-14T10:47:33-06:00

New World Disorder

2021-07-14T10:49:50-06:00
04/26
Supporting Image
Supporting Image
Electron movement in disordered nanowires

We tend to think of materials as either electrical conductors or insulators: some materials, like metals, have low electrical resistance and conduct electricity easily, while others, like wood or plastic, have high electrical resistance and do not readily conduct electricity. Strange experimental results, however, reveal large fluctuations in the electrical resistance of thin metallic nanowires when a magnetic field or charge difference is applied to them. Click to learn how a more nuanced understanding of electron behavior helps to explain these variations in electrical resistance that may revolutionize the tech industry!

0 0    
New World Disorder2021-07-14T10:49:50-06:00
Go to Top