Kids, like many of us, love playing with non-Newtonian fluids. Photo by tookapic/Pixabay.
Apr 21, 2021 0    
What is a Non-Newtonian Fluid?
Ketchup and oobleck and slime, oh my!

Many substances in our lives – like oobleck, slime, or Silly Putty – don’t quite behave the way we expect a fluid to, despite some fluid-like properties. These substances fall into a special category: non-Newtonian fluids. Scientifically, this term is a bit of a catch-all for any substances that have a complicated relationship between their apparent viscosity and the force applied to them.

There are many kinds of non-Newtonian fluids out there, and you may be surprised at how familiar you are with some of them! The following list is not exhaustive, but it will introduce you to some of the common types of non-Newtonian fluids out there. And keep in mind that many fluids can fall into one or more of these categories.

Shear-Thinning Fluids

These fluids have a viscosity that seems to get smaller once the fluid starts flowing. The classic example here is ketchup. When trying to pour from a glass bottle, ketchup can be painfully slow to start moving. But if you knock the bottom of the glass with just a little too much force, all of a sudden, the ketchup goes flying everywhere! That bump gets the ketchup flowing well enough to lower its viscosity, and whoosh, your fries are now drenched.

Shear-thinning fluids are incredibly common in our lives; shampoo, latex paint, whipped cream, many hair gels, and even your blood are all shear-thinning fluids.

Shear-Thickening Fluids

A shear-thickening fluid is essentially the opposite of a shear-thinning one; it’s a fluid whose apparent viscosity is greater when force is applied. Oobleck – a suspension of cornstarch and water – is the classic example here. Left on its own, oobleck flows like a liquid, but when struck or shaken, it behaves more like a solid. That enables demonstrators to do some pretty wild things, like running across a pool of oobleck or creating cornstarch monsters.

Recently, investigations have shown the specific mechanism behind oobleck’s hardening has more to do with cornstarch particles inside the suspension jamming together, so there are suggestions that it should instead be called a shear-jamming fluid.

Yield-Strength Fluids (a.k.a. Bingham Plastics)

Yield-strength fluids won’t budge until a certain minimum force is applied, and then they’ll start flowing. A great example of this is your toothpaste. When you open your toothpaste tube, it doesn’t immediately start squirting out. It’s only after you squeeze the tube – thereby applying the necessary force – that it begins to flow. Other common examples are mayonnaise, smooth peanut butter, and some yogurts. Typically, yield-strength fluids can hold peaks in their surface when still.

Viscoelastic Fluids

Some fluids have both the viscous properties of a fluid and the elasticity – the ability to return to a previous shape – of a solid. If you imagine a spectrum where one end flows like water and the other end stretches like a rubber band, then these fluids all fall somewhere between those two extremes. Typically, the elastic properties of these fluids come from the inclusion of long molecules like proteins or polymers that resist being stretched. That extra elasticity creates some bizarre properties, like liquids that can pour themselves out of their container or batter that tries to climb up the mixer as you beat it!

Many industrial fluids – looking at you, Silly Putty! — are viscoelastic, but so is your saliva. That’s why you sometimes end up with a long, thin string of it hanging from your mouth when you try to spit out toothpaste. Cake batters, bread dough, and just about anything with beaten eggs in it will also behave viscoelastically.

Fig. 1 (Click to enlarge). Ketchup is a classic shear-thinning fluid. Once it starts flowing, its viscosity drops and it flows more easily, which is why it can end up all over your fries. Photo by Nicole Sharp.
Fig. 1 (Click to enlarge). Ketchup is a classic shear-thinning fluid. Once it starts flowing, its viscosity drops and it flows more easily, which is why it can end up all over your fries. Photo by Nicole Sharp.
Fig. 2 (Click to enlarge). Yield-strength fluids like toothpaste won't flow until a critical minimum force is exceeded. Photo by Nicole Sharp.
Fig. 2 (Click to enlarge). Yield-strength fluids like toothpaste won't flow until a critical minimum force is exceeded. Photo by Nicole Sharp.
Fig. 3 (Click to enlarge). When stretched, viscoelastic fluids often form droplets along a thin strand of fluid rather than breaking up. This is known as the beads-on-a-string instability. Image by Bavard Keshavarz.
Fig. 3 (Click to enlarge). When stretched, viscoelastic fluids often form droplets along a thin strand of fluid rather than breaking up. This is known as the beads-on-a-string instability. Image by Bavard Keshavarz.
Fig. 4 (Click to enlarge). Watch as this homemade viscoelastic fluid
Fig. 4 (Click to enlarge). Watch as this homemade viscoelastic fluid "climbs up" a spinning rod. This bizarre behavior is a product of the fluid's ability both to stretch like a solid and to flow like a liquid.
 
SHARE THIS POST:

Related Posts

04/20
Supporting Image
Supporting Image
Fluids and filling

You take a pristine-looking Oreo from a package of seemingly identical sandwich cookies, and you decide to open it up to eat the creme filling first. You gently twist the cookie apart without breaking the chocolate wafers, but the creme sticks to one side only. Why? Happily, the physics of fluids helped two MIT students solve this delicious mystery. Read on to find out what they learned, and how you can test their results at home.

0 0    
07/21
Supporting Image
Supporting Image
Honey pours slower than water, but why?

The term may be unfamiliar, but we all have a sense for viscosity. We often think of it colloquially as the “thickness” of a fluid. It’s the property that makes honey pour so differently from water. Fluid dynamicists – scientists and engineers who study how liquids and gases move – tend to think of viscosity in terms of a fluid’s resistance to flowing or changing its shape.

0 0    

More Funsize Fundamentals

07/21
Supporting Image
Supporting Image
Honey pours slower than water, but why?

The term may be unfamiliar, but we all have a sense for viscosity. We often think of it colloquially as the “thickness” of a fluid. It’s the property that makes honey pour so differently from water. Fluid dynamicists – scientists and engineers who study how liquids and gases move – tend to think of viscosity in terms of a fluid’s resistance to flowing or changing its shape.

0 0    
04/28
Supporting Image
Supporting Image
Crystal diffraction

Have you ever wondered why some materials are hard and others soft, some conduct heat or electricity easily while others don't, some are transparent to light while others are opaque . . . and on and on and on? The material universe is vast and diverse, and while a material's properties depend in part on the elements it is made from, its structure—how it is built from its constituent atoms—can also have wide-ranging effects on how it looks, feels, and behaves. Diffraction is a method that allows us to "see" the atomic structure of materials. Read on to find out how it works!

0 0    
04/21
Kids, like many of us, love playing with non-Newtonian fluids. Photo by tookapic/Pixabay.
Kids, like many of us, love playing with non-Newtonian fluids. Photo by tookapic/Pixabay.
What is a Non-Newtonian Fluid?

Why do so many fluids behave counterintuitively? Many substances in our lives – like oobleck, slime, or Silly Putty – don’t quite behave the way we expect a fluid to, despite some fluid-like properties. These substances fall into a special category: non-Newtonian fluids. Scientifically, this term is a bit of a catch-all for any substances that have a complicated relationship between their apparent viscosity and the force applied to them.

0 0    
11/11
Water droplets atop a coin form a flattened spherical shape due to surface tension. Photo by Nicole Sharp.
Water droplets atop a coin form a flattened spherical shape due to surface tension. Photo by Nicole Sharp.
What is Surface Tension?

Surface tension is a somewhat peculiar force. Its effects are all around us, from bubbles and droplets to cleaning our dishes. Surface tension is an important force in our daily lives. But what is it really? Since it tends to act at the scale of millimeters or smaller, we don’t always notice it. It’s critical, however, for many creatures smaller than us, from water-walking insects to star-nosed moles that sniff out food underwater. So what is surface tension and where does it come from?

0 0    
11/05
Researchers at IBM moved around iron atoms on a copper surface to spell out the Kanji characters for the word atom. Image courtesy of IBM.
Researchers at IBM moved around iron atoms on a copper surface to spell out the Kanji characters for the word atom. Image courtesy of IBM.
Using STM to take pictures of atoms

You’re lining up your phone to take a picture of your dog. Light comes down from the sun, bounces off the dog, and into your camera lens, allowing you to take the photo. Your eyes work similarly, taking in all the light particles, known as photons, that are scattering off of objects in the world. Most things “see” by detecting these bouncing photons, which is why both you and your phone have a hard time seeing anything at all when the lights are off.

0 0    

WRITE COMMENT

Go to Top