Supporting Image
Mar 5, 2020 0    
Soapy Science
How to Make a Giant Bubble

For the past two decades, giant bubble enthusiasts have been creating soap film bubbles of ever-increasing volumes. As of 2020, the world record for a free-floating soap bubble stands at 96.27 cubic meters, a volume equal to about 25,000 U.S. gallons. For a spherical bubble, this corresponds to a diameter of more than 18 feet and a surface area of over 1,000 square feet—larger than some apartments!

A simple glance at the multitude of colors reflected by the bubble film suggests a film thickness on the order of a few microns, approximately the diameter of a human red blood cell. In other words, the film’s size is nearly one million times its thickness, which is quite staggering considering that a single hole can lead to the film’s demise. How are such large films created, and how do they remain stable?

The secret, as they say, is in the sauce. The key to creating giant bubbles is controlling the viscoelasticity of the soap films. Viscoelasticity combines two properties of the soap solution: its viscosity, which describes a liquid’s resistance to flow, and its elasticity, which describes how easily a material springs back into shape when deformed.

We know that the addition of long-chain polymer molecules creates optimum viscoelasticity for producing stable soap films. Two of the most common polymer types are guar gum and polyethylene oxide (PEO). When dissolved in water, guar forms long starch chains of varying sizes. PEO is more well-controlled, producing chains of more uniform size. In both cases, the polymer strands become entangled, something like a hairball, forming longer strands that don’t want to break apart. In the right combination, a polymer allows a soap film to reach a “sweet spot” that is viscous but also stretchy—just not so stretchy that it rips apart.

Most bubbles are held together by surface tension, but the physics of making giant bubbles with polymer solutions involves additional forces that are still poorly understood. The behavior of a soap bubble polymer solution depends on the properties of individual chains as well as the interactions between these chains. Polymer properties such as molecular weight, concentration, and chain length are exceedingly important. It’s no wonder there exists a complete online wiki devoted to the fine-tuning of giant bubble recipes!

We have identified some of the underlying physical mechanisms by which PEO or guar give rise to giant bubbles. The best solutions for making bubbles have intermediate concentrations and a mixture of polymers of various molecular weights and chain lengths, allowing a large volume of liquid to be continuously drawn into the soap film without breaking. By measuring the thickness of films over time, we also found that a film’s durability increases at higher concentrations than those often used in bubble solutions. This suggests that polymers may enhance film longevity even after some of the liquid has evaporated or drained out of the soap film.

Understanding the physics of polymer solutions and soap films is not just important to giant soap bubble enthusiasts. Foams with various additives contribute to long-lasting pollution in rivers and waterways contaminated with industrial runoff. Thus, the formation, mechanics, and stability of these solutions are also important environmental problems.

For more information and a physicist’s recipe for making giant bubbles, check out the links below!

Fig. 1 (Click to enlarge). Physicist Justin Burton (left) and graduate student Stephen Frazier experiment with giant soap bubbles on Emory University's Quad.
Fig. 1 (Click to enlarge). Physicist Justin Burton (left) and graduate student Stephen Frazier experiment with giant soap bubbles on Emory University's Quad.
Fig. 2 (Click to enlarge). A lab experiment measures how long the thread of a soap bubble droplet can stretch before breaking.
Fig. 2 (Click to enlarge). A lab experiment measures how long the thread of a soap bubble droplet can stretch before breaking.
Fig. 3 (Click to enlarge). A falling droplet of soap solution with polymer added.
Fig. 3 (Click to enlarge). A falling droplet of soap solution with polymer added.
Fig. 4 (Click to enlarge). A lab experiment measures the forces as a soap bubble bursts.
Fig. 4 (Click to enlarge). A lab experiment measures the forces as a soap bubble bursts.
Fig. 5 (Click to enlarge). Testing bubble solutions in the Burton Lab.
Fig. 5 (Click to enlarge). Testing bubble solutions in the Burton Lab.
TAGS: #bubbles    #fluid dynamics    #polymers    #rheology    #thin films    #viscosity    
 
SHARE THIS POST:

Related Posts

11/07
Kids, like many of us, love playing with non-Newtonian fluids. Photo by tookapic/Pixabay.
Kids, like many of us, love playing with non-Newtonian fluids. Photo by tookapic/Pixabay.
What is a Non-Newtonian Fluid?

Why do so many fluids behave counterintuitively? Many substances in our lives – like oobleck, slime, or Silly Putty – don’t quite behave the way we expect a fluid to, despite some fluid-like properties. These substances fall into a special category: non-Newtonian fluids. Scientifically, this term is a bit of a catch-all for any substances that have a complicated relationship between their apparent viscosity and the force applied to them.

0 0    
09/22
Supporting Image
Supporting Image
Funsize Lasers

Soap bubbles are marvelously playful. A cascade of bubbles blown into the air can send children running in circles to pop them before they hit the ground. And if you know how to look, soap bubbles are just as playful on much smaller scales, sending scientists running in circles to understand their fascinating physics. Read on to learn more!

0 0    
04/20
Supporting Image
Supporting Image
Fluids and filling

You take a pristine-looking Oreo from a package of seemingly identical sandwich cookies, and you decide to open it up to eat the creme filling first. You gently twist the cookie apart without breaking the chocolate wafers, but the creme sticks to one side only. Why? Happily, the physics of fluids helped two MIT students solve this delicious mystery. Read on to find out what they learned, and how you can test their results at home.

0 0    

More Funsize Research

11/21
Supporting Image
Supporting Image
Nanoscale fluid mechanics

We think we're pretty familiar with how ordinary liquids behave, but it turns out that some of the basic things we know are no longer true when we look at these liquids on short enough length scales and fast enough time scales. The liquids start to behave more like solids, pushing back when you push on them, and slipping across solid surfaces instead of being dragged along. Click to ride the tiny-but-mighty new wave of nanofluidics!

0 0    
09/22
Supporting Image
Supporting Image
Funsize Lasers

Soap bubbles are marvelously playful. A cascade of bubbles blown into the air can send children running in circles to pop them before they hit the ground. And if you know how to look, soap bubbles are just as playful on much smaller scales, sending scientists running in circles to understand their fascinating physics. Read on to learn more!

0 0    
07/25
Supporting Image
Supporting Image
Ferroelectric hafnia

Ferroelectric materials generate electric fields that move charges around, just as a bar magnet produces a magnetic field that moves magnets around. Ferroelectric materials can be used for data storage to make electronics more energy efficient, but they don’t always play well with the silicon technology used in devices like phones and computers. HAFNIA TO THE RESCUE! Click to learn more.

0 0    
04/20
Supporting Image
Supporting Image
Fluids and filling

You take a pristine-looking Oreo from a package of seemingly identical sandwich cookies, and you decide to open it up to eat the creme filling first. You gently twist the cookie apart without breaking the chocolate wafers, but the creme sticks to one side only. Why? Happily, the physics of fluids helped two MIT students solve this delicious mystery. Read on to find out what they learned, and how you can test their results at home.

0 0    
05/12
Supporting Image
Supporting Image
Laser memory

Instead of pencil, paper, and eraser, we can use combinations of lasers and magnetic materials to write, read, and and erase information by varying the temperature and magnetic field. Here we apply our laser "pencil" to magnetic "paper" to write the letter “N” (Go Huskers!!). This technique allows us write, erase, and rewrite tiny magnetic memories like those found in your computer hard drive and other devices. Click to learn how it works!

0 0    
04/20
Supporting Image
Supporting Image
Thermalizing nanowires

It’s a hot summer day. You desperately want something cold to drink, but unfortunately, your bottle of root beer has been sitting in a hot car all day. You put it into a bucket full of ice to cool it down. But it’s taking forever! How, you wonder, could you speed the process up? The same question is important for understanding how electronic devices work, and how we can make them work better by controlling the temperature of the electrons that power them. Read on to find out what a bottle of root beer in a cooler full of ice and a nanowire in a vat of liquid helium have in common!

0 0    
02/23
Supporting Image
Supporting Image
World's smallest diode

Diodes, also known as rectifiers, are a basic component of modern electronics. As we work to create smaller, more powerful and more energy-efficient electronic devices, reducing the size of diodes is a major objective. Recently, a research team from the University of Georgia developed the world's smallest diode using a single DNA molecule. This diode is so small that it cannot be seen by conventional microscopes.

0 0    
02/01
Supporting Image
Supporting Image
Liquid magnetism
by Robert Streubel, Scott Schrage

You may have heard that there are three main phases of matter: solids, liquids, and gases (plus plasma if you want to get fancy). Liquids can take virtually any shape and deform instantly. Solid materials possess interesting electronic and magnetic properties essential to our daily life. But how about designing rigid liquids with magnetic properties? Impossible? Not anymore. Click to learn more!

0 0    
11/05
Supporting Image
Supporting Image
Building a better computer
by Peter Dowben, Jocelyn Bosley

Scientists are working to develop electronic devices that store and process information by manipulating a property of electrons called spin—a research area aptly known as spintronics. The semiconductors we are developing will not only be faster and cheaper than those used in conventional devices, but will also have more functionality.

1 1    
11/05
Supporting Image
Supporting Image
Good vibrations

Materials that are absolutely perfect—in other words, materials that contain no defect of any kind—are usually not very interesting. Imagine being married to a saint: you would quickly be bored out of your mind! Defects and impurities can considerably change many properties of materials in ways that allow a wide range of applications.

0 0    
11/05
Supporting Image
Supporting Image
Secrets of semiconductors

Semiconductors are materials with properties intermediate between metals and non-conducting insulators, defined by the amount of energy needed to make an electron conductive in the material. The non-conducting electrons occupy a continuum of energy states, but two of these states (the “heavy hole” and “light hole”) are nearly identical in energy. The heavy hole is easy to observe and study, but the light hole eludes most observers.

0 0    
11/05
Supporting Image
Supporting Image
Locking up electrons

Solids are generally divided into metals, which conduct electricity, and insulators, which do not. Some oxides straddle this boundary, however: a material's structure and properties suggest it should be a metal, but it sometimes behaves as an insulator. Researchers at the University of California, Santa Barbara are digging into the mechanisms of this transformation and are aiming to harness it for use in novel electronic devices.

0 0    
11/05
Supporting Image
Supporting Image
Nanomagnetism

You may know that the media used in magnetic recording technologies, such as computer hard drives, are made of millions of tiny nanomagnets. Each nanomagnet can be switched up or down to record bits of information as ones and zeros. These media are constantly subjected to magnetic fields in order to write, read, and erase information. If you have ever placed a magnet too close to your laptop or cell phone, you know that exposure to an external magnetic field can disrupt information stored this way. Did you know that it is possible for the nanomagnets to "remember" their previous state, if carefully manipulated under specific magnetic field and temperature conditions? Using a kind of memory called topological magnetic memory, scientists have found out how to imprint memory into magnetic thin films by cooling the material under the right conditions.

0 0    
11/05
Supporting Image
Supporting Image
Slow reflection

Inside solids, the properties of photons can be altered in ways that create a kind of "artificial gravity" that affects light. Researchers at the University of Pittsburgh tracked photons with a streak camera and found that whey they enter a solid-state structure, they act just like a ball being thrown in the air: they slow down as they move up, come to a momentary stop, and fall back the other way. Studying this "slow reflection" will allow us to manipulate light's behavior, including its speed and direction, with potential applications in telecommunications and quantum computing technologies.

0 0    
11/05
Supporting Image
Supporting Image
Superfluid helium droplets

In a unique state of matter called a superfluid, tiny "tornadoes" form that may play an important role in nanotechnology, superconductivity, and other applications. Just as tornadoes are invisible air currents that become visible when they suck debris into their cores, the quantum vortices in superfluids attract atoms that make the vortices visible. Quantum vortices are so small they can only be imaged using very short-wavelength x-rays, however.

0 0    
11/05
Supporting Image
Supporting Image
Magnetic anisotropy

Would you rather have data storage that is compact or reliable? Both, of course! Digital electronic devices like hard drives rely on magnetic memory to store data, encoding information as “0”s and “1”s that correspond to the direction of the magnetic moment, or spin, of atoms in individual bits of material. For magnetic memory to work, the magnetization should not change until the data is erased or rewritten. Unfortunately, some magnetic materials that are promising for high density storage have low data stability, which can be improved by squeezing or stretching the crystal structures of magnetic memory materials, enhancing a material property called magnetic anisotropy.

0 0    

WRITE COMMENT

Go to Top