What would you like to search for?

The Shape of the Future

2016-02-25T13:57:41-06:00
02/25
Supporting Image
Supporting Image
Cubic or hexagonal?

There are many ways atoms can arrange microscopically to form crystalline materials. Interestingly, materials created from different arrangements of the same atoms may exhibit completely different physical and chemical properties. A method called thin film epitaxy allows scientists not only to fine-tune the properties of known materials, but also to generate completely new materials with structures and properties not found in nature.

0 0    
The Shape of the Future2016-02-25T13:57:41-06:00

Strike Up the Band (Structure)

2016-03-02T14:39:21-06:00
03/02
Supporting Image
Supporting Image
Building a better computer

Scientists are working to develop electronic devices that store and process information by manipulating a property of electrons called spin—a research area aptly known as spintronics. The semiconductors we are developing will not only be faster and cheaper than those used in conventional devices, but will also have more functionality.

1 1    
Strike Up the Band (Structure)2016-03-02T14:39:21-06:00

Carbon Onions

2016-03-01T11:34:30-06:00
02/29
Supporting Image
Supporting Image
Exotic nanostructures

Carbon-based nanostructures are among the most intensely studied systems in nanotechnology. Potential practical applications span the fields of medicine, consumer electronics, and hydrogen storage, and they could even be used to develop a space elevator. A research team at the University of Northern Iowa is probing the properties of multilayered carbon nanostructures known as "carbon onions."

0 0    
Carbon Onions2016-03-01T11:34:30-06:00

Gravity for photons

2017-06-08T15:32:35-06:00
12/14
Supporting Image
Supporting Image
Slow reflection

Inside solids, the properties of photons can be altered in ways that create a kind of "artificial gravity" that affects light. Researchers at the University of Pittsburgh tracked photons with a streak camera and found that whey they enter a solid-state structure, they act just like a ball being thrown in the air: they slow down as they move up, come to a momentary stop, and fall back the other way. Studying this "slow reflection" will allow us to manipulate light's behavior, including its speed and direction, with potential applications in telecommunications and quantum computing technologies.

0 0    
Gravity for photons2017-06-08T15:32:35-06:00

Interacting with the World’s Universal Building Blocks

2017-07-06T13:26:22-06:00
08/04
Supporting Image
Supporting Image
Free app

AtomTouch is a free, interactive molecular simulation app, created by researchers at the University of Wisconsin Materials Research Science and Engineering Center (UW MRSEC) to allow learners to explore principles of thermodynamics and molecular dynamics in an tactile, engaging way.

0 0    
Interacting with the World’s Universal Building Blocks2017-07-06T13:26:22-06:00

CHASING THE MYSTERIOUS AND ELUSIVE LIGHT HOLE

2016-12-16T10:09:10-06:00
12/02
Supporting Image
Supporting Image
Secrets of semiconductors

Semiconductors are materials with properties intermediate between metals and non-conducting insulators, defined by the amount of energy needed to make an electron conductive in the material. The non-conducting electrons occupy a continuum of energy states, but two of these states (the “heavy hole” and “light hole”) are nearly identical in energy. The heavy hole is easy to observe and study, but the light hole eludes most observers.

0 0    
CHASING THE MYSTERIOUS AND ELUSIVE LIGHT HOLE2016-12-16T10:09:10-06:00

Straining for More Stable Memory

2017-06-27T09:35:05-06:00
01/31
Supporting Image
Supporting Image
Magnetic anisotropy

Would you rather have data storage that is compact or reliable? Both, of course! Digital electronic devices like hard drives rely on magnetic memory to store data, encoding information as “0”s and “1”s that correspond to the direction of the magnetic moment, or spin, of atoms in individual bits of material. For magnetic memory to work, the magnetization should not change until the data is erased or rewritten. Unfortunately, some magnetic materials that are promising for high density storage have low data stability, which can be improved by squeezing or stretching the crystal structures of magnetic memory materials, enhancing a material property called magnetic anisotropy.

0 0    
Straining for More Stable Memory2017-06-27T09:35:05-06:00

Crystals and Spintronics

2016-03-10T09:20:18-06:00
03/07
Supporting Image
Supporting Image
Made to order

Many solid materials have a crystal structure, with atoms that exist in a particular, organized arrangement. The degree of organization can vary among crystals, however. High-quality crystalline materials are the foundation of many familiar devices, such as integrated circuits and solar cells. A better understanding of these materials and how to produce them is important for developing new technologies.

0 0    
Crystals and Spintronics2016-03-10T09:20:18-06:00

How to Turn a Metal Into an Insulator

2016-05-26T08:21:57-06:00
04/15
Supporting Image
Supporting Image
Locking up electrons

Solids are generally divided into metals, which conduct electricity, and insulators, which do not. Some oxides straddle this boundary, however: a material's structure and properties suggest it should be a metal, but it sometimes behaves as an insulator. Researchers at the University of California, Santa Barbara are digging into the mechanisms of this transformation and are aiming to harness it for use in novel electronic devices.

0 0    
How to Turn a Metal Into an Insulator2016-05-26T08:21:57-06:00

Melting and Freezing Bits and Bytes

2018-07-03T12:10:06-06:00
06/01
Supporting Image
Supporting Image
Phase-change memory

In phase-change memory (PCM), nanoscale volumes of a special kind of glass compound are heated by very short electrical pulses, causing the atomic structure of the material to switch between an ordered phase and a disordered phase. These phase-change materials have been used for years to store data on rewritable CDs and DVDs, but until recently, the large energy required to change the state of the material has made it impractical for electronic memory. If this challenge can be overcome, phase-change memory can be integrated with conventional silicon electronics for high-capacity data storage and more efficient computation. Click to read more about how we are working to make this new technology a reality!

0 0    
Melting and Freezing Bits and Bytes2018-07-03T12:10:06-06:00

The future of solar energy is . . . an inkjet printer?!

2018-04-26T15:57:45-06:00
08/19
Supporting Image
Supporting Image
Printable perovskites

To increase our use of solar energy, we need to create more efficient, stable, and cost-effective solar cells. What if we could use an inkjet printer to fabricate them? A new type of solar cell uses a class of materials called perovskites, which have a special crystal structure that interacts with light in a way that produces an electric voltage. We've developed a method to produce perovskite thin films using an inket printer, which in the future could pave the way to manufacture solar cells that are surprisingly simple and cheap.

0 0    
The future of solar energy is . . . an inkjet printer?!2018-04-26T15:57:45-06:00

Heat Flow and Quantum Oscillators

2017-06-08T15:32:36-06:00
03/10
Supporting Image
Supporting Image
Good vibrations

Materials that are absolutely perfect—in other words, materials that contain no defect of any kind—are usually not very interesting. Imagine being married to a saint: you would quickly be bored out of your mind! Defects and impurities can considerably change many properties of materials in ways that allow a wide range of applications.

0 0    
Heat Flow and Quantum Oscillators2017-06-08T15:32:36-06:00

Make 21st-Century Wonder Material Graphene Cheaply and Easily in the Classroom!

2016-06-06T14:37:25-06:00
03/14
Supporting Image
Supporting Image
Chemical vapor deposition

Graphene is a two-dimensional material made from a single sheet of atoms, with outstanding mechanical, electronic, and thermal properties. It is a promising candidate to enable next-generation technologies in a wide range of fields, including electronics, energy, and medicine. This economical, safe, and simple lab activity allows students to make graphene via chemical vapor deposition in 30–45 minutes in a classroom setting.

0 0    
Make 21st-Century Wonder Material Graphene Cheaply and Easily in the Classroom!2016-06-06T14:37:25-06:00

Creating nanoscale octopus structures from polymer brushes

2018-01-23T14:57:15-06:00
01/19
Supporting Image
Supporting Image
Molecular engineering

Very small structures, much smaller than the human eye can see, often fall in the size range of nanometers. By understanding how the molecules that make up these structures interact, we can engineer them to do many special things that cannot be done at a larger scale. One exciting structure is a polymer brush, in which long, chain-like molecules called polymers are tethered at one end to a surface and stick up from the surface like bristles on a hairbrush. Polymer brushes can be used to keep bacteria away, provide an exceptionally smooth surface for items to slide across, or trap other molecules in solution like a hairbrush traps loose hair. In order to engineer polymer brushes that will perform as desired for a given application, we must understand the physics of how the molecular bristles move, and the chemistry of how they interact with their environment.

0 0    
Creating nanoscale octopus structures from polymer brushes2018-01-23T14:57:15-06:00

Froot Loops, Legos, and Self-Assembly

2019-02-12T14:50:43-06:00
02/12
Supporting Image
Supporting Image
Forming nanostructures

Self-assembly is the process by which individual building blocks—at the smallest level, atoms—spontaneously form larger structures. The structures they form depend on the size and shape of the building blocks, and on the conditions to which these building blocks are exposed. This can be demonstrated quite simply using breakfast cereal, or for more complex cases using specially prepared Legos.

0 0    
Froot Loops, Legos, and Self-Assembly2019-02-12T14:50:43-06:00

Superfluid helium and black holes

2017-09-05T11:30:22-06:00
09/05
Supporting Image
Supporting Image
An entangled connection

At low temperatures, helium—the same substance that makes balloons float—becomes a special type of liquid known as a superfluid, which has zero viscosity. It's like the anti-molasses! The properties of superfluids are governed by the laws of quantum mechanics. More specifically, the atoms in superfluid helium are “entangled” with each other, allowing them to share information and influence each other’s behavior in ways that are totally foreign to our everyday experience, and which Einstein famously described as "spooky action at a distance." Better still, scientists have recently discovered that the law controlling entanglement between different parts of a helium superfluid is the same as that governing the exotic behavior of black holes in outer space.

0 0    
Superfluid helium and black holes2017-09-05T11:30:22-06:00

Superpowers of Liquid Crystals

2017-06-08T15:32:36-06:00
03/10
Supporting Image
Supporting Image
Liquid crystal sensors

It's a solid . . . it's a liquid . . . it's a LIQUID CRYSTAL! Researchers at the University of Wisconsin-Madison Materials Research Science and Engineering Center are investigating how the unique properties of liquid crystals allow them to act as environmental sensors, detecting toxins in the environment. In this video, we give a brief overview of what liquid crystals are and how their properties can be utilized to improve the world.

0 0    
Superpowers of Liquid Crystals2017-06-08T15:32:36-06:00

Hunting Quantum Tornadoes with X-rays

2017-06-08T15:32:35-06:00
12/20
Supporting Image
Supporting Image
Superfluid helium droplets

In a unique state of matter called a superfluid, tiny "tornadoes" form that may play an important role in nanotechnology, superconductivity, and other applications. Just as tornadoes are invisible air currents that become visible when they suck debris into their cores, the quantum vortices in superfluids attract atoms that make the vortices visible. Quantum vortices are so small they can only be imaged using very short-wavelength x-rays, however.

0 0    
Hunting Quantum Tornadoes with X-rays2017-06-08T15:32:35-06:00

Going With the FFLO

2016-02-24T11:38:01-06:00
02/24
Supporting Image
Supporting Image
Magnets and superconductors

Superconductors and magnetic fields do not usually get along, but a research team led by a Brown University physicist has produced new evidence for an exotic superconducting state that can indeed arise when a superconductor is subject to a strong magnetic field. Their results could enable scientists to develop materials for more efficient memory storage, and even help to explain the behavior of distant astronomical objects called pulsars.

0 0    
Going With the FFLO2016-02-24T11:38:01-06:00

Use a laser pointer to measure the thickness of your hair!

2018-03-21T12:30:32-06:00
06/21
Supporting Image
Supporting Image
Light scattering and diffraction

Have you ever wondered how scientists can accurately measure the size of very small objects like molecules, nanoparticles, and parts of cells? Scientists are continually finding new ways to do this, and one powerful tool they use is light scattering. When an incoming beam of light hits an object, the light "scatters," or breaks into separate streams that form different patterns depending on the size of the object. This incoming light might be visible light, like the light we see from the sun, or it might be higher-energy light like X-rays. The light from commercial laser pointers, it turns out, is perfectly suited to measure the size of a human hair!

0 0    
Use a laser pointer to measure the thickness of your hair!2018-03-21T12:30:32-06:00

Use Light to Turn Your World Upside-Down!

2017-06-08T15:32:37-06:00
02/19
Supporting Image
Supporting Image
Making upside-down images

We can easily observe light with our eyes, and so it is one of the most familiar parts of the world around us. And yet, light often does amazing and unexpected things. Light travels in straight lines from the source to our eyes. This fact allows us to understand many of the cool things that light can do. In this lesson, we will observe how light creates mirages and shadows. And we will build a pinhole camera which makes things appear upside-down. We can understand the upside-down images by thinking about the straight line that the light took from the object to the screen.

0 0    
Use Light to Turn Your World Upside-Down!2017-06-08T15:32:37-06:00

Exotic Quantum States

2017-11-21T13:53:34-06:00
11/21
Supporting Image
Supporting Image
Quantum weirdness

At ordinary temperatures and at the subatomic level, chaos is the rule. At low enough temperatures, however, electrons are constrained, forming exotic phases that exhibit long-range order, or repeating patterns.

0 0    
Exotic Quantum States2017-11-21T13:53:34-06:00

New World Disorder

2018-06-01T11:27:45-06:00
04/26
Supporting Image
Supporting Image
Electron movement in disordered nanowires

We tend to think of materials as either electrical conductors or insulators: some materials, like metals, have low electrical resistance and conduct electricity easily, while others, like wood or plastic, have high electrical resistance and do not readily conduct electricity. Strange experimental results, however, reveal large fluctuations in the electrical resistance of thin metallic nanowires when a magnetic field or charge difference is applied to them. Click to learn how a more nuanced understanding of electron behavior helps to explain these variations in electrical resistance that may revolutionize the tech industry!

0 0    
New World Disorder2018-06-01T11:27:45-06:00

Using Liquid Metals to Draw Functional Circuits

2017-06-08T15:32:36-06:00
03/23
Supporting Image
Supporting Image
Soft electronics

Most electronics are made out of rigid materials like silicon, but it is possible to make wires and other electronics using entirely soft and squishy materials. By utilizing liquid metal nanoparticles, we can even draw wires by hand using light pressure from a magic marker to squish the particles together.

0 0    
Using Liquid Metals to Draw Functional Circuits2017-06-08T15:32:36-06:00

Improving Transparent Electronics

2016-02-23T16:12:38-06:00
02/23
Supporting Image
Supporting Image
Transparent conducting oxides

Transparent conducting oxides are unusual but highly useful materials that combine transparency to visible light, similar to glass, with high electrical conductivity, similar to copper and other metals.

0 0    
Improving Transparent Electronics2016-02-23T16:12:38-06:00

How to Make a Quantum Laser Pointer

2016-02-27T23:07:04-06:00
02/27
Supporting Image
Supporting Image
Nanowires

Scientists and engineers are making smaller and smaller structures designed to control the quantum states of electrons in a material. By controlling quantum mechanics, we can create new materials that do not exist in nature, develop more efficient solar cells and faster computer chips, and even discover exotic new states of matter.

0 0    
How to Make a Quantum Laser Pointer2016-02-27T23:07:04-06:00

Building Molecular Circuits with DNA

2017-06-08T15:32:36-06:00
04/11
Supporting Image
Supporting Image
World's smallest diode

Diodes, also known as rectifiers, are a basic component of modern electronics. As we work to create smaller, more powerful and more energy-efficient electronic devices, reducing the size of diodes is a major objective. Recently, a research team from the University of Georgia developed the world's smallest diode using a single DNA molecule. This diode is so small that it cannot be seen by conventional microscopes.

0 0    
Building Molecular Circuits with DNA2017-06-08T15:32:36-06:00

From Nanowaffles to Nanostructures!

2019-07-08T08:57:03-06:00
01/15
Supporting Image
Supporting Image
Self-assembly

How can you fabricate a huge number of nanostructures in a split second? Self-assembly is a fast technique for the mass production of materials and complex structures. But before self-assembly is ready for prime time, scientists need to establish ways to control this process, so that desired nanostructures emerge from the unstructured soup of basic building blocks that are fast-moving atoms and molecules.

0 0    
From Nanowaffles to Nanostructures!2019-07-08T08:57:03-06:00

Swing-Dancing Electron Pairs

2019-06-27T09:14:46-06:00
02/19
Supporting Image
Supporting Image
Superconductors

Superconductors are materials that permit electrical current to flow without energy loss. Their amazing properties form the basis for MRI (magnetic resonance imaging) devices and high-speed maglev trains, as well as emerging technologies such as quantum computers. At the heart of all superconductors is the bunching of electrons into pairs. Click the image to learn more about the "dancing" behavior of these electron pairs!

1 1    
Swing-Dancing Electron Pairs2019-06-27T09:14:46-06:00

Fluid Dynamics of Paper Making

2017-06-08T15:32:37-06:00
02/19
Supporting Image
Supporting Image
Fibers and turbulence

Measurements of the three-dimensional motion of fibers in turbulent fluid flow are helping us understand the multiphase flows involved in making paper.

0 0    
Fluid Dynamics of Paper Making2017-06-08T15:32:37-06:00

Spins and Skyrmions

2019-01-31T12:45:14-06:00
07/03
Supporting Image
Supporting Image
Magnetic patterns

Recent progress in materials science has led to the creation of new magnetic materials in which the magnetism follows complex patterns. The formation of these patterns depends on a phenomenon called spin-orbital coupling. Because they can be manipulated by electric currents and temperature changes, materials exhibiting these interesting magnetic patterns may have applications in magnetic memories and logic devices. Click to learn how!

0 0    
Spins and Skyrmions2019-01-31T12:45:14-06:00

Spin cant? Spin CAN!

2019-02-06T13:31:54-06:00
01/25
Supporting Image
Supporting Image
Magnets with a twist
by Aldo Raeliarijaona, Alexey Kovalev

In most magnetic materials, the magnetic moments of individual atoms are aligned parallel to one another and point in the same direction. In special structures called skyrmions and antiskyrmions, however, they are arranged in a spiraling pattern. Their stability and compact size makes skyrmions and antiskyrmions especially useful for encoding lots of data in a small space. But a few questions need to be answered before skyrmion-based technology can be used in your iPhone or other memory devices. First, why do these magnetic structures form in some materials and not others? How can we design a system where they will form? And how can we generate these structures on demand? Click to find out!

0 0    
Spin cant? Spin CAN!2019-02-06T13:31:54-06:00

Bioelectricity, Reimagined

2018-04-19T17:31:39-06:00
01/23
Supporting Image
Supporting Image
Electric Eel Inspires New Power Source

The electric eel's ability to generate incredibly large amounts of electric power from within its body has fascinated scientists for centuries. In fact, some of the world’s first batteries were inspired by studies of this amazing animal. Now, scientists have developed a new eel-inspired energy source that may one day be used to power electronics implanted within the human body.

0 0    
Bioelectricity, Reimagined2018-04-19T17:31:39-06:00

The Adventures of Solar Neutrons

2017-08-18T13:28:11-06:00
07/14
Supporting Image
Supporting Image
Detecting neutron radiation
by Peter Dowben, Nicole Benker

Neutron radiation detection is an important issue for the space program, satellite communications, and national defense. But since neutrons have no electric charge, they can pass through many kinds of solid objects without stopping. This makes it difficult to build devices to detect them, so we need special materials that can absorb neutrons and leave a measurable signature when they do. Researchers at the University of Nebraska-Lincoln are studying the effects of solar neutron radiation on two types of materials on the International Space Station (ISS), using detectors made of very stable compounds that contain boron-10 and lithium-6.

0 0    
The Adventures of Solar Neutrons2017-08-18T13:28:11-06:00

Games Proteins Play

2017-09-08T12:52:49-06:00
09/08
Supporting Image
Supporting Image
What is biophysics?

Biophysics is a field that applies knowledge of physics to understand and explain biological phenomena. Biophysicists study life at different levels, from atoms and molecules to cells, organisms, and their environments. They focus on questions such as how proteins function, how nerve cells communicate, how viruses invade human cells, how plants absorb sunlight and convert it into food, and so on. Biophysics has contributed significantly to improving human health in multiple ways, and the study of protein-protein interactions is an especially important biophysical topic. By exploring the molecular basis of complicated biomedical diseases, biophysicists help to develop methods to treat these diseases.

0 0    
Games Proteins Play2017-09-08T12:52:49-06:00

Imprinting Memory in Nanomagnets by Field Cooling

2016-12-06T11:06:13-06:00
11/18
Supporting Image
Supporting Image
Nanomagnetism

You may know that the media used in magnetic recording technologies, such as computer hard drives, are made of millions of tiny nanomagnets. Each nanomagnet can be switched up or down to record bits of information as ones and zeros. These media are constantly subjected to magnetic fields in order to write, read, and erase information. If you have ever placed a magnet too close to your laptop or cell phone, you know that exposure to an external magnetic field can disrupt information stored this way. Did you know that it is possible for the nanomagnets to "remember" their previous state, if carefully manipulated under specific magnetic field and temperature conditions? Using a kind of memory called topological magnetic memory, scientists have found out how to imprint memory into magnetic thin films by cooling the material under the right conditions.

0 0    
Imprinting Memory in Nanomagnets by Field Cooling2016-12-06T11:06:13-06:00